US009411755B2

a2z United States Patent (10) Patent No.: US 9,411,755 B2
Ravirala et al. 45) Date of Patent: Aug. 9, 2016
(54) SOFTWARE DEBOUNCING AND NOISE 7,847,614 B2 12/2010 Taylor
FILTERING MODULES FOR INTERRUPTS 2006/0076984 Al 4/2006 Lu
2007/0159363 Al* 7/2007 Suenetal. ... 341/26
. . . . 2008/0162025 Al 7/2008 Groer et al.
(71) Applicant: g’llgr"s"g \T;thl[lj"sl;’gy Licensing, LLC, 2009/0303088 Al 12/2009 Vile et al.
edmond,
. FOREIGN PATENT DOCUMENTS
(72) Inventors: Murali Ravirala, Sammamish, WA
(US); Omid Fatemieh, Redmond, WA WO 95/33228 Al 12/1995
(US); Gabriel Knezek, Seattle, WA
EUS%; Youssef Barakat, Bothell, WA OTHER PUBLICATIONS
Us
Contact-debouncing algorithm emulates Schmitt trigger—Published
(73) Assignee: Microsoft Technology Licensing, LLC, Date: Jul. 7, 2005 Proceedings: NA Author: Elio Mazzocca pp. 3
Redmond, WA (US) http://www.embedded.com/print/4324067.
" Keyboards—Published Date: Dec. 17, 2004 Proceedings: NA
(*) Notice: SUbJeCt. to any (?;S(Cilalmeé{ the Iiermefﬂ;; Author: NA pp. 17 http://www.lintech.org/comp-per/04KB.pdf.
patent 1s extended or adjusted under .
U.S.C. 154(b) by 180 days. (Continued)
(21) Appl. No.: 13/867,094
Primary Examiner — Glenn A Auve
o4
(22) Filed: Apr. 21, 2013 (74) Attorney, Agent, or Firm — John Jardine; Doug Barker;
Micky Minhas
(65) Prior Publication Data by
US 2014/0317327 Al Oct. 23, 2014
(57) ABSTRACT
(1) Int. CI. Systems and methods for debouncing a signal line within a
GO6F 13/24 (2006.01) . . .
computer device are provided. The mechanical nature of
GO6F 3/023 (2006.01) A . . .
physical buttons and switches oftentimes present irregular or
HO3K 5/1254 (2006.01) T . .
(52) US.Cl noisy signals on a signal line when depressed by a user. Thus,
CPC oo GOGF 13/24 (2013.01); GOGF 3/023 Eﬁj‘iﬁ:ﬁﬁr ;Ifoﬁ?éiggﬁgﬁcﬁztﬁﬁ; isi?;;:‘ Svlvgﬁfé
(2013.01); HO3K 5/1254 (2013.01) : . . -
. . . deemed valid and genuine. In many embodiments given
(58) Field of Classification S(?arch) herein, debounce modules and techniques set a debounce
ICJIS)SC """" GOGF 9/4812; GOGF 13/24; G067Fl (3); gé; interval timer and/or a noise filtering interval timer in which
St e e debounce modules and/or techniques may note whether the
See application file for complete search history. signal line is still asserted (e.g., possibly a genuine interrupt
(56) References Cited signal) during the debounce interval timer and stable (e.g., no

U.S. PATENT DOCUMENTS

5,315,539 A
7,218,250 B2 *

5/1994 Hawes
5/2007 Laliberte et al. 341/24

further interrupts have fired) during the noise filtering interval
timer.

18 Claims, 5 Drawing Sheets

200

PHASE 1: WHEN AN INTERRUPT FIRES (INITIALINTERRUPT OR NOISE INTERRUPT)

204

INTERRUPT FIRES

INITIAL INTERRUPT STATE

SET CURRENT INTERRUPT EPOCH = 0
STATE = INITIAL INTERRUPT STATE
PROGRAM LINE WITH ITS INITIAL [MODE,

NOISE TIMER STATE

ADVANCE CURRENT
INTERRUPT
EPOCH VALUE

MASK THE INTERRUPT
UNE

STATE = DEBOUNCE
TIMER STATE

SCHEDULE DEBOUNCE
TIMER

ADVANCE CURRENT
INTERRUPT
EPOCH VALUE

218

220

STATE = INTIAL

INTERRUPT STATE 2

MASK THE INTERRUPT
LNE

24

REPROGRAM THE LINE
BACK TOITS ORIGINAL

[MODE, POLARITY] 226

UNMASK INTERRUPT

LINE 28

US 9,411,755 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Software Button Debouncing and Ergonomics—Published Date:
Jun. 2, 2005 Proceedings: NA Author: Nathaniel W. Crutcher pp. 8
http://ncrutcher.com/nat/button-debounce.html.

Tach Noise filtering—Published Date: Jan. 9, 2010 Proceedings: NA
Author: NA pp. 6 http://www.msextra.com/doc/ms2extra/MS2-Ex-
tra_noise.html.

“International Search Report & Written Opinion for PCT Patent
Application No. PCT/US2013/059565”, Mailed Date: Dec. 2, 2013,
Filed Date: Sep. 13, 2013, 8 Pages.

Simple Debounce Routine—Published Date: Sep. 30, 2008, Pro-
ceedings: NA, Author: Benoit, http://stackoverflow.com/questions/
155071/simple-debounce-routine.

My favorite software debouncers—Published Date: Jun. 16, 2004,
Proceedings: NA, Author: Jack Ganssle http://www.embedded.com/
electronics-blogs/break-points/402498 1/My-favorite-software-
debouncers.

A Guide to Debouncing—Published Date: Aug. 2004, Proceedings:
NA, Author: NA, http://www.ganssle.com/debouncing.pdf.

* cited by examiner

U.S. Patent

/102

CPU

104

Aug. 9,2016

Sheet 1 of 5

(‘100

GPIO CONTROLLER __

INTERRUPT

K106

/‘108

N

\ LINES ;55
4@’\ \ DB
120 \ GPIO
SYSTEM
INTERRUPT | ﬁ CONTROLLER
CONTROLLER -
(10-APIC, -
GIC ETC.
) =

GPIOPINSOR ™~

SERIAL BUS

——D}CONTROLLER

(12C, SPI, ETC.)

AN

K110

[-112 120
EMBEDDED m
CONTROLLER
(EC)

\120

114
DB

CONTROLLER

FIG.1

WITH
INTEGRATED
GPIO

GPIO

US 9,411,755 B2

PERIPHERAL DEVICES
(DEV1, DEV2, DEV3,
DEV4A —~

120

120

118d

U.S. Patent Aug. 9,2016 Sheet 2 of 5 US 9,411,755 B2

(—200

PHASE 1: WHEN AN INTERRUPT FIRES (INITIAL INTERRUPT OR NOISE INTERRUPT)

SET CURRENT INTERRUPT EPOCH = 0 202
STATE = INITIAL INTERRUPT STATE
PROGRAM LINE WITH ITS INITIAL [MODE,
POLARITY]

204

[INTERRUPT FIRESJ 206

208
INITIAL INTERRUPT STATE NOISE TIMER STATE
{ NG !
ADVANCE CURRENT) ADVANCE CURRENT)
INTERRUPT N INTERRUPT /\218
210
EPOCHVALUE EPOCH*VALUE Y,
4 \ 4 \
MASK THE INTERRUPT | CANCEL NOISE INTERVALpF™S
LINE 212 TIMER 220
: Y, _ ; Y,
N e A
STATE = DEBOUNCE | STATE = INITIAL L —
TIMER STATE 214 INTERRUPT STATE 222
> v) Y
4 4
SCHEDU_Il:lEMDEERBOUNCE L — MASK THLE"I\II\IIETERRUPT L
216 224
_ J _ J

("REPROGRAM THE LINE)
BACK TO ITS ORIGINAL [

_ [MODE, POLARITY] 226
N
UNMASK INTERRUPT PN
LINE 228
S

END

FIG.2

U.S. Patent Aug. 9,2016 Sheet 3 of 5 US 9,411,755 B2

’/"300

PHASE 2: WHEN DEBOUNCE TIMER FIRES

(302 [304

[DEBOUNCE TIMER]
FIRES REPROGRAM INTERRUPT LINE WITH:
——————————— MODE = LEVEL SENSITIVE

POLARITY = < OPPOSITE OF CURRENT POLARITY

!

RECORD THE CURRENT INTERRUPT
EPOCH AND ASSOCIATE WITH
NOISE INTERVAL TIMER

!

SCHEDULE A FINE-GRAINED TIMER 308
FOR NOISE FILTERING INTERVAL

!

STATE = NOISE TIMER STATE

!

UNMASK INTERRUPT

N

306

o

S8

310

312

Y Y Y

END

FIG.3

U.S. Patent Aug. 9,2016 Sheet 4 of 5 US 9,411,755 B2

’/— 400

PHASE 3: WHEN NOISE FILTERING INTERVAL TIMER FIRES

/_ 402

NOISE FILTERING
INTERVAL TIMER FIRES

_—,— e ——— — — — —y

EPOCH
MATCH?

406

INVOKE TARGET ISR

!

STATE = INITIAL
INTERRUPT STATE

!

MASK INTERRUPT LINE

!

REPROGRAM THE LINE
BACK TO ITS ORIGINAL
(MODE POLARITY)

!

UNMASK INTERRUPT
LINE

408

Y

410

)

412

o

414

D R S S

=

416

END

FIG.4

U.S. Patent Aug. 9, 2016

Sheet 5 of 5 US 9,411,755 B2

/‘ 504a

END OF DEBOUNCE INTERVAL |— 5065

[

w.—’I END OF NOISE FILTERING INTERVAL |

r//

502'
"
(A) | ‘ | H
- J
Y
502a

/‘ 504b

END OF DEBOUNCE INTERVAL_J- 5061,

,.,«»"""’i END OF NOISE FILTERING INTERVAL |

502c
502'

(€

504c

END OF DEBOUNCE INTERVAL - 506¢

END OF NOISE FILTERING INTERVALl

FIG.5

US 9,411,755 B2

1
SOFTWARE DEBOUNCING AND NOISE
FILTERING MODULES FOR INTERRUPTS

BACKGROUND

The mechanical nature of physical buttons or switches
often prevents smooth voltage transitions when they are
pressed or released. This may tend to create short-lived
bounces on the line before the voltage settles and may trigger
spurious interrupts. It may be desirable that such interrupts be
debounced to provide only one interrupt invocation for each
press or release (e.g., to the device driver consuming the
interrupt). Otherwise, the device driver (or other “con-
sumer”), seeing the interrupt, might assume multiple presses
and behave incorrectly.

SUMMARY

The following presents a simplified summary of the inno-
vation in order to provide a basic understanding of some
aspects described herein. This summary is not an extensive
overview of the claimed subject matter. It is intended to
neither identify key or critical elements of the claimed subject
matter nor delineate the scope of the subject innovation. Its
sole purpose is to present some concepts of the claimed sub-
ject matter in a simplified form as a prelude to the more
detailed description that is presented later.

Systems and methods for debouncing a signal line within a
computer device are provided. The mechanical nature of
physical buttons and switches oftentimes present irregular or
noisy signals on a signal line when depressed by a user. Thus,
noise and/or irregular waveforms may be present on a signal
line that is monitored to produce interrupt signals, when
deemed valid and genuine. In many embodiments given
herein, debounce modules and techniques set a debounce
interval timer and/or a noise filtering interval timer in which
debounce modules and/or techniques may note whether the
signal line is still asserted (e.g., possibly a genuine interrupt
signal) during the debounce interval timer and stable (e.g., no
further interrupts have fired) during the noise filtering interval
timer.

In one embodiment, a method for debouncing a signal line
is described comprising: detecting an assertion of a signal on
said signal line; masking said signal line; setting a first timer;
upon the expiration of said first timer, unmasking said signal
line; setting a second timer; upon the expiration of said sec-
ond timer, noting if said signal line is still asserted; if said
signal line is still asserted, invoking an interrupt signal. In
another embodiment, if the signal line remained asserted and
stable during the second timer, then an interrupt signal may be
invoked.

In another embodiment, a system for debouncing a signal
line is described comprising: a controller; a debounce mod-
ule, said debounce module in communication with a signal
line and capable of executing upon said controller; and
wherein further said debounce module capable of: detecting
anassertion of a signal on said signal line; masking said signal
line; setting a first timer; upon the expiration of said first
timer, unmasking said signal line; setting a second timer;
upon the expiration of said second timer, noting if said signal
line is still asserted; if said signal line is still asserted, invok-
ing an interrupt signal. In another embodiment, if the signal
line remained asserted and stable during the second timer,
then an interrupt signal may be invoked.

10

15

20

25

30

35

40

45

50

55

60

65

2

Other features and aspects of the present system are pre-
sented below in the Detailed Description when read in con-
nection with the drawings presented within this application.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments are illustrated in referenced fig-
ures of the drawings. It is intended that the embodiments and
figures disclosed herein are to be considered illustrative rather
than restrictive.

FIG. 1 depicts one embodiment of a computer device/
system in which a debounce module may reside and execute
at many possible points in the computer system.

FIGS. 2 through 4 depict one embodiment of a debounce
module in flowchart form.

FIGS. 5A through 5C depict exemplary waveforms that
might be resident on an interrupt line to help explain how the
debounce module may process them.

DETAILED DESCRIPTION

2 < 2 <

As utilized herein, terms “component,” “system,” “inter-
face,” “controller”, “modules” and the like are intended to
refer to a computer-related entity, either hardware, software
(e.g., in execution), and/or firmware. For example, any of
these terms can be a process running on a processor, a pro-
cessor, an object, an executable, a program, and/or a com-
puter. By way of illustration, both an application running on
a server and the server can be a component and/or controller.
One or more components/controllers can reside within a pro-
cess and a component/controller can be localized on one
computer and/or distributed between two or more computers.

The claimed subject matter is described with reference to
the drawings, wherein like reference numerals are used to
refer to like elements throughout. In the following descrip-
tion, for purposes of explanation, numerous specific details
are set forth in order to provide a thorough understanding of
the subject innovation. It may be evident, however, that the
claimed subject matter may be practiced without these spe-
cific details. In other instances, well-known structures and
devices are shown in block diagram form in order to facilitate
describing the subject innovation.

Introduction

Many possible factors may lead to spurious interrupts. For
example, an interrupt line may be exposed to noise signals
due to static or interference on the line, or incorrect firmware
behavior for the device controlling the line. To measure a
system’s immunity to such noise signals, there exist industry-
standard tests like the Electro-Static Discharge (ESD) that
introduce random and periodic noise on the interrupt lines.
Using effective noise filtering mechanisms, modern com-
puter systems are expected to pass ESD tests and avoid mis-
behaviors resulting from acting on spurious interrupts.

Attempts to address the above problems fall into two broad
categories, namely solutions implemented in both software
and hardware. The most widely-adopted software solutions
often involve sampling the interrupt line at some rate (e.g.
every 1 millisecond) for a certain number of times (e.g. 5). If
the line shows “asserted” on all those samples, the interrupt is
deemed genuine. However, this approach may employ several
higher magnitudes of CPU cycles to detect genuine interrupt
and may not be able to filter periodic noise signals.

Hardware-based debouncing solutions may involve adding
circuitry to suppress noise and bounces on the line. Thus, due
to a potentially increased Bill-of-Materials (BOM) costs,
software-based debouncing using fewer system resources
may be preferred.

US 9,411,755 B2

3

Overview

In many embodiments of the present application, there are
systems and methods provided that tend to effectively filters
out spurious bounces that occur during a genuine interrupt—
as well as spurious interrupts due to random and periodic
noise.

In one embodiment, an algorithm is provided that tends to
perform accurate noise filtering while tending to consume a
small amount of CPU resources. In one embodiment, the
algorithm may only process a single physical interrupt to
detect a genuine interrupt and two interrupts to detect a spu-
rious interrupt. In one embodiment, the algorithm tends to be
power efficient as it tends to allow the CPU to enter low-
power during a first period of time (e.g., a debounce interval).

In some embodiments, the algorithm may leverage inter-
rupt controller capabilities (e.g., reprogramming the line) to
sample the line continuously instead of requiring the CPU to
sample the line at fixed intervals. In some embodiments, the
algorithm also introduces a second period of time (e.g., a
noise filtering interval) for noise detection.

First Embodiment

FIG. 1 shows one exemplary embodiment where systems
and/or methods of the present application may reside in an
exemplary computer system. It should be appreciated that the
techniques of software debouncing may be implemented in
one or many of the components of a computing system—e.g.,
in one or more drivers, GPIO controllers, interrupt control-
lers, embedded controllers or other controllers. It should also
be appreciated that the techniques of the present application
may reside and/or execute in other components of a comput-
ing system as well.

FIG. 1 shows an exemplary computer system 100 which
may comprise (in whole or in some combination thereof):
CPU 102, system bus 104, system interrupt controller 106,
bus controller 108, GPIO controller 110, embedded control-
ler 112, controller 114 with integrated GPIO 116, and periph-
eral devices 118a, 1185, 118¢ and 118d. Debounce (DB)
methods and/or controllers 120 may reside in any number of
the above-mentioned components of computer system 100. It
will be appreciated that such DB systems and/or methods
may reside in other parts of a computer system as well.

DB modules, systems and/or methods may be executing on
these components and be in communication with and/or
monitoring signal lines for interrupt signals that may tend to
be the source of signal bounce and noise. One embodiment of
a DB solution is implemented as a software and/or firmware
module debouncing that may effectively debounce interrupts.
In another embodiment, a DB solution may be implemented
to debounce—while also tending to ensure that noise/spuri-
ous interrupts may be appropriately filtered out. Such a DB
embodiment may handle both random noise as well as peri-
odic noise signals.

In one embodiment, a DB module may works as follows:

(1) Allow the interrupt line to stabilize for a debounce time
period and/or duration—may be as specified in e.g., ACPI
firmware. During this time, the line may be masked to ignore
any additional interrupts generated due to bouncing. This
interval is called the “debouncing interval”. It should be
appreciated that a suitable debounce time period may be
based on a certain characteristics—e.g., system characteris-
tics, line characteristics, signal characteristics or the like—
but may be set in order for the interrupt line to typically
stabilize.

(2) Unmask the interrupt line and monitor the line for a
very short time period and/or duration—called the “noise

10

15

20

25

30

35

40

45

50

55

60

4
filtering interval”—to validate that the line is indeed asserted
and remains stable. It should be appreciated that a suitable
noise filtering time period may be based on a certain charac-
teristics—e.g., system characteristics, line characteristics,
signal characteristics or the like—but may be set in order for
the interrupt line to typically stabilize.

(3) If the line is asserted and stable during the entire noise
filtering interval, then invoke the interrupt service routing
(e.g., ISR) or otherwise, notify interested entities about the
interrupt. Otherwise, the interrupt may be discarded as spu-
rious.

In one embodiment, the debouncing interval may be
defined by the platform vendor and/or component specifica-
tions—e.g., via ACPI firmware. This value may depend on the
specification of the part (e.g. button, switch, etc.) but may
approximately range between 5 and 25 milliseconds. Other
intervals are, of course, possible.

The noise filtering interval may be defined by the imple-
mentation. In one implementation, it may be possible to
choose the interval to be approximately 500 microseconds for
memory-mapped GPIO controllers (or system interrupt con-
trollers) and approximately 1 millisecond for non-memory-
mapped controllers (e.g. GPIOs interfaced to the system via a
serial communication bus like 12C). It should be understood
that other intervals are possible, depending on the specifica-
tions and implementation. Thus, noise filtering interval may
be very short relative to debounce interval.

Below is the detailed algorithm in pseudo-code format:

TABLE 1

Pseudo Code Embodiment

State represents the current state for the interrupt line in the debounce
state machine. Possible values = { InitialInterruptState, DebounceTimer-
State,

NoiseTimerState}

EventType represents the event that caused the debounce routine to be
invoked. PossibleValues = { OnlInterruptEvent, OnDebounceTimerEvent,
OnNoiseTimerEvent}

Initial conditions: For each interrupt,

1) Define a mutual exclusion lock and set it to released (i.e. not
acquired).
2) Set the current interrupt epoch value as 0.
3) Set the State = InitialInterruptState
Debouncelnterrupt(int EventType) {

Acquire mutual exclusion lock associated with this interrupt line
// Phase 1: When an interrupt fires (EventType = OnInterruptEvent) The
// interrupt may correspond to initial interrupt or noise interrupt.

// On initial interrupt
If (EventType == OnlnterruptEvent) && (State == InitialInterruptState),
then:

Advance the current interrupt epoch for the interrupt line.

Mask the interrupt line

Set State = DebounceTimerState

Schedule a timer for the debounce interval specified. The interval is

implementation defined.

goto End // Done Processing
// On noise interrupt
If (EventType == OnlnterruptEvent) && (State == NoiseTimerState) , then:

Advance the current interrupt epoch for the interrupt line.

Cancel the noise interval timer

Set State = InitialInterruptState

Mask the interrupt line

Reprogram the line to its original interrupt mode and polarity.

Unmask the interrupt line.

goto End // Done Processing; note: interrupt discarded as spurious

(time elapses)

// Phase 2: When the debounce timer fires (State == DebounceTimerState)
If (EventType == OnDebounceTimerEvent) && (State ==
DebounceTimerState), then:
Reprogram the interrupt line in the following configuration:
Interrupt mode = Level Sensitive, and

US 9,411,755 B2

5
TABLE 1-continued

Pseudo Code Embodiment

Interrupt polarity = <the opposite polarity of initial polarity>.
Record the current interrupt epoch and associate it with noise interval
timer.
Schedule a timer for noise filtering interval. The noise filtering interval is
implementation defined.
Set State = NoiseTimerState
Unmask the interrupt line
goto End // Done Processing
// Phase 3: When the noise interval timer fires (State == NoiseTimerState)
If (EventType == OnNoiseTimerEvent) && (State == NoiseTimerState),
then:
If the current interrupt epoch matches the epoch recorded when the
noise timer was queued (in Phase 2), then:
Invoke the interrupt service routine registered for the line
Set State = InitialInterruptState
Mask the interrupt line
Reprogram the line to its original interrupt mode and polarity.
Unmask the interrupt line.
If the epoch values do not match, then:
Ignore the timer fire // Implies a noise interrupt occurred

goto End // Done Processing
End:
Release the mutual exclusion lock associated with this interrupt line

}

FIGS. 2 through 4 depict another embodiment of the DB
techniques, as given in flowchart format. FIG. 2 represents the
DB module in Phase 1, as acting upon startup (step 202) and
when an initial interrupt on a line occurs (step 204). Step 208
determines in which state the DB module is operating—e.g.,
either during initial interrupt state or during a noise timer
state. Initial interrupt state proceeds as steps 210 through 216;
while noise timer state proceeds as steps 218 through 228.

FIG. 3 represents the DB module, as when the debounce
timer fires at step 302—as possibly set at step 216 in FIG. 2.
When the debounce timer fires, the DB module proceeds as
step 304 through 314. During this phase (Phase 2), the polar-
ity state may be reversed from its current state, the current
interrupt epoch is recorded, the state of the DB is set to noise
timer state, a timer is scheduled for the noise filtering interval
and the interrupt line is unmasked.

FIG. 4 represents the DB module, as when the noise filter-
ing interval timer fires at step 402 (Phase 3). When this
occurs, DB module proceeds according to steps 404 through
416. In such case, if the epoch matches at step 404, then the
interrupt is deemed valid and an ISR may be invoked at 406.
The DB module is then brought back to initial interrupt state,
the interrupt line is masked while the line is reprogrammed
back to its original polarity and then unmasked.

The DB module then is set back to its original states back
in Phase 1 and ready for another interrupt to fire and the DB
module proceeds substantially continuously as described
above.

DB Module Behavior Embodiments

In one embodiment, the DB module may be invoked mul-
tiple times (e.g. three times) for whenever an interrupt to be
debounced fires.

The first invocation may happen when the interrupt fires
and starts a new debounce phase. The EventType may be
OnlnterruptEvent and State will match InitiallnterruptState.
In this state, the interrupt line gets masked, debounce timer is
queued and the state is updated to DebounceTimerState.

The second invocation may happen when the debounce
timer fires. The EventType will be OnDebounceTimerEvent
and State may match DebounceTimerState. In this state, the
line may be reprogrammed to look for the signal getting

10

15

20

25

30

35

40

45

50

55

60

65

6

deasserted. The noise filter timer may be queued and the line
is unmasked. The state may also be updated to NoiseTimer-
State. Since the line may be programmed to detect for the
opposite polarity, if the line is not stable, an interrupt may fire
before the noise filter timer expires. Apart from programming
the line and detecting polarities, there may be other tech-
niques for determining whether an interrupt has fired during
(or prior to the expiration of) the noise filter timer—e.g., a
sample/hold circuit or the like, may be able to capture the
logic of this incident.

The third invocation may happen when either the noise
timer expires or a noise interrupt arrives.

For genuine signals, the noise timer may fire. The Event-
Type will be OnNoiseTimerEvent and State will match
NoiseTimerState. The interrupt service routine may be
invoked. The line may be reprogrammed back to its initial
state and the state will be reset to InitiallnterruptState.

In case of noise interrupts, the module may be invoked with
EventType as OnlnterruptEvent and State matching Noise-
TimerState. In this case, interrupt line may be reprogrammed
back to its original configuration and the state reset to Ini-
tiallnterruptState. The noise timer may also be cancelled to
prevent it from firing. It should be noted that the interrupt
service routine registered for the line may not be invoked in
this case and thereby the interrupt may be discarded as spu-
rious.

It may be possible for noise timer to fire at the same time as
an incoming noise interrupt. In this case, the module may be
invoked a fourth time. The behavior may depend on the order
in which the events happen—e.g., determined by which event
acquires the mutual exclusion lock first.

If the noise timer fires after the noise interrupt is already
processed, then the invocation may be ignored due to inter-
rupt epoch mismatch as explained further below. If the noise
interrupt arrives after noise timer fires, then the interrupt may
betreated as the start of a new interrupt and processed accord-

ingly.
Embodiment Employing Interrupt Epoch

In many cases, the noise interrupt may arrive well before
the noise filtering interval timer fires and may get cancelled
before it runs during Phasel (State==NoiseTimerState) in the
above module. However, it may be possible that the noise
timer fires just before the module attempts to cancel the noise
timer. In such cases, it may be assumed that the request to
cancel the noise timer may fail and the debounce algorithm
may be invoked for Phase 3 with (State=—NoiseTimerState).

It may also be possible that noise interval timer expires but
it actually runs much later when the debounce algorithm has
progressed ahead to some later interrupt (e.g., likely for off-
SoC GPIO controllers). To deal with such cases, the module
may tend to maintain an “interrupt epoch value” that is incre-
mented on every interrupt—e.g., regardless of whether it is
the initial/new interrupt or a noise interrupt. If the noise
interrupt already fired before the noise timer runs, then the
epoch value won’t match and the invocation will be ignored.
In some embodiments, the interrupt epoch may be defined as
a monotonically increasing integer value that may be incre-
mented in an atomic manner.

Embodiments Supporting Edge-Triggered Only
Controllers

In many embodiments, the above module may tend to rely
on reprogramming the controller in level-triggered mode to
detect whether the line remains asserted and stable during the

US 9,411,755 B2

7

noise filtering interval or not. Level detection may be pre-
ferred over edge detection in some cases, as edges may be
missed if they happen during reprogramming or prior to it.
Most GPIO controllers and primary interrupt controllers sup-
port level detection for interrupts. However, it may be pos-
sible that some interrupt controllers only support edge-detec-
tion for interrupts. To handle such cases, the reprogramming
may be done to detect edge during Phase 2. Since edges may
be missed, it may be possible that some noise interrupts may
be missed. Thus, the module may function substantially on a
“best efforts™ basis for those types of controllers.

Examples of DB Module Processing

Merely for expository purposes (and not meant to limit the
scope of the present application), FIGS. 5A, 5B and 5C are
exemplary waveforms representing some of possible cases
that debouncing may need to handle. In these examples, it is
assumed that the interrupt is configured as ActiveHigh (i.e.
interrupt is asserted when the line goes HIGH). Other, difter-
ent, assumptions are possible.

FIG. 5A depicts a waveform (e.g. progressing in time from
left to right) in which a set of signals 502a are present on an
interrupt line (e.g., possibly after a user has manually
depressed a switch or button and bounce in evident on the
interrupt line). This waveform may thus represent a typical
signal having some noise at the beginning and then the line
goes stable well before the debounce interval ends. As may be
seen, the debounce interval may have been set—e.g., starting
from the leading edge (502') of the first spike of 502a and
ending with the line 504a. In addition, the noise filtering
interval may have been set from line 5044 and ending with the
line 506q. In this case, the line will be sampled to be Active-
High and will not cause an interrupt during the noise filtering
interval. Thus, in this case, the interrupt would be considered
valid and target ISR would be invoked.

It should be appreciated that the start of the first timer (e.g.
debounce interval timer) may be different from the start of the
leading edge of a first spike (e.g., a falling edge or another
edge or the like) and that the length of the debounce interval
may vary, depending on other factors (e.g. system character-
istics or line characteristics). In addition, the noise filtering
interval may start from another point in time—e.g., other than
the end of the debounce interval. Also, the noise interval
duration may be made to vary, depending on system and/or
line characteristics. It may suffice for the purposes of the
present application is that—however the first and second
timers (e.g. debounce interval and noise filtering interval) are
set, there is a good correlation between such two timers that
helps to characterize a spike as either a genuine interrupt or a
noise signal.

FIG. 5B depicts a waveform in which a single noise signal
5025 is present on the line (e.g. possibly characterized by a
very short duration). In this case, as the noise is short duration,
the line will tend to revert to its quiescent state before the
debouncing interval expires. The line would be sampled low
at the end of debounce interval 5045 and thus ignored by the
DB module.

FIG. 5C depicts a waveform that may represent a glitchy
line—e.g., where the noise may happen to occur roughly at
some frequency. The frequency could be such that it overlaps
with the debouncing interval. In this case, the line would be
sampled HIGH. However, as the noise is expected to be much
smaller than the noise filtering interval, this would tend to
cause an interrupt during the noise filtering interval—which
would result in an interrupt epoch mismatch. In such a case,
the signal would tend to be ignored.

10

15

20

25

30

35

40

45

50

55

60

65

8

What has been described above includes examples of the
subject innovation. It is, of course, not possible to describe
every conceivable combination of components or methodolo-
gies for purposes of describing the claimed subject matter, but
one of ordinary skill in the art may recognize that many
further combinations and permutations of the subject innova-
tion are possible. Accordingly, the claimed subject matter is
intended to embrace all such alterations, modifications, and
variations that fall within the spirit and scope of the appended
claims.

In particular and in regard to the various functions per-
formed by the above described components, devices, circuits,
systems and the like, the terms (including a reference to a
“means”) used to describe such components are intended to
correspond, unless otherwise indicated, to any component
which performs the specified function of the described com-
ponent (e.g., a functional equivalent), even though not struc-
turally equivalent to the disclosed structure, which performs
the function in the herein illustrated exemplary aspects of the
claimed subject matter. In this regard, it will also be recog-
nized that the innovation includes a system as well as a
computer-readable medium having computer-executable
instructions for performing the acts and/or events of the vari-
ous methods of the claimed subject matter.

In addition, while a particular feature of the subject inno-
vation may have been disclosed with respect to only one of
several implementations, such feature may be combined with
one or more other features of the other implementations as
may be desired and advantageous for any given or particular
application. Furthermore, to the extent that the terms
“includes,” and “including” and variants thereof are used in
either the detailed description or the claims, these terms are
intended to be inclusive in a manner similar to the term
“comprising.”

The invention claimed is:
1. A method for debouncing a signal line, the method
comprising:
detecting an assertion of a signal on said signal line;
masking said signal line to ignore any additional signals on
said signal line;
setting a first timer;
upon the expiration of said first timer, unmasking said
signal line;
setting a second timer;
upon the expiration of said second timer, noting if said
signal line is still asserted;
if said signal line is still asserted, invoking an interrupt
signal.
2. The method of claim 1 wherein detecting an assertion of
a signal on said signal line further comprises:
detecting an edge of a waveform on said signal line.
3. The method of claim 2 wherein detecting an edge of a
waveform on said signal line further comprises:
detecting a leading edge of a waveform on said signal line.
4. The method of claim 1 wherein setting a first timer
further comprises:
setting a debounce interval timer.
5. The method of claim 4 wherein setting a debounce
interval timer further comprises:
selecting a debounce time period, said debounce time
period selected according to one a group, said group
comprising: system characteristics, line characteristics,
component specifications and signal characteristics.
6. The method of claim 4 wherein setting a debounce
interval timer further comprises
selecting a time period approximately 5 to 25 milliseconds.

US 9,411,755 B2

9

7. The method of claim 1 wherein setting a second timer
further comprises:

setting a noise filtering interval timer.

8. The method of claim 6 wherein setting a noise filtering
interval timer further comprises:

selecting a noise filtering time period, said noise filtering

time period selected according to one a group, said
group comprising: system characteristics, line charac-
teristics, component specifications and signal character-
istics.

9. The method of claim 6 wherein setting a noise filtering
interval timer further comprises:

selecting a time period approximately 0.5 to 1 millisec-

onds.

10. The method of claim 1 wherein noting if said signal line
is still asserted further comprises:

noting if said signal line is stable during the period of said

second timer.

11. The method of claim 10 wherein noting if said signal
line is stable during the period of said second timer further
comprises:

detecting whether an interrupt has fired during the period

of the second timer.

12. The method of claim 11 wherein detecting whether an
interrupt has fired during the period of the second timer fur-
ther comprises:

noting whether an epoch value has changed during the

period of the second timer; and

if said epoch value has not changed, then noting that an

interrupt did not fire during said period of the second
timer.

13. The method of claim 10 wherein if said signal line is
still asserted, invoking an interrupt signal further comprises:

if said signal line is still asserted and is stable during the

period of said second timer, invoking an interrupt signal.

14. A system for debouncing a signal line, said system
comprising:

a controller;

a debounce module, said debounce module in communi-

cation with a signal; and

10

15

20

25

30

35

10

wherein further said debounce module configured to:

detect an assertion of a signal on said signal line;

mask said signal line to ignore any additional signals on

said signal line;

set a first timer;

upon the expiration of said first timer, unmask said signal

line;

set a second timer;

upon the expiration of said second timer, note if said signal

line is still asserted;

if'said signal line is still asserted, invoke an interrupt signal.

15. The system of claim 14 wherein said debounce module
is configured to detect a leading edge of a waveform on said
signal line.

16. The system of claim 14 wherein said debounce module
is further configured to set a debounce interval time for said
first timer; and

said debounce interval time comprising one of a group,

said group comprising: time selected from system char-
acteristics, time selected from line characteristics, time
selected from component specifications, time selected
from signal characteristics and a time period of approxi-
mately 5 to 25 milliseconds.

17. The system of claim 16 wherein said debounce module
is further configured to set a noise filtering interval time for
said second timer; and

said noise filtering interval time comprising one of a group,

said group comprising: time selected from system char-
acteristics, time selected from line characteristics, time
selected from component specifications, time selected
from signal characteristics and a time period of approxi-
mately 0.5 to 1 milliseconds.

18. The system of claim 17 wherein said debounce module
is further configured to note if said signal line is still asserted
and noting if'said signal line is stable during the period of said
second timer; and

said debounce module is configured to invoke an interrupt

signal if said signal line is still asserted and stable during
the period of said second timer.

#* #* #* #* #*

